A model of the 2014 Ebola virus: Evidence of West Africa

Main Article Content

Nadhem Selmi

Abstract

Outbreaks of Ebola virus can cause substantial mortality in affected countries. The largest outbreak of Ebola to date is currently underway in West Africa, with 3944 cases reported as of September 5, 2014. For the sake of deriving a better understanding of the Ebola transmission dynamics, we have undertaken to revisit data from the initial spark of origin of the Ebola virus, which occurred in 1976 in Zaire (now Democratic Republic of Congo). By fitting a mathematical process to time series stratified by disease onset, outcome and source of infection, we have managed to estimate several epidemiological quantities, previously admitted to be too challenging to measure, including hospital and infected community contribution infection to the widespread transmission.

Article Details

Selmi, N. (2019). A model of the 2014 Ebola virus: Evidence of West Africa. International Journal of Clinical Virology, 3(1), 010–015. https://doi.org/10.29328/journal.ijcv.1001004
Research Articles

Copyright (c) 2019 Selmi N.

Creative Commons License

This work is licensed under a Creative Commons Attribution 4.0 International License.

Diekmann O, Heesterbeek J. Mathematical Epidemiology of Infectious Diseases: Model-building, Analysis, and Interpretation. West Sussex: Wiley; 2000. Ref.: https://tinyurl.com/y59kcjsk

Anderson RM, RM M. Infectious diseases of humans: Dynamics and Control. Oxford: Oxford University Press; 1991. Ref.: https://tinyurl.com/yyowvjv7

Chowell G, Fenimore PW, Castillo-Garsow MA, Castillo-Chavez C. SARS outbreaks in Ontario, Hong Kong and Singapore: the role of diagnosis and isolation as a control mechanism. J Theor Biol. 2003; 224: 1-8. Ref.: https://tinyurl.com/y25dusmd

Chowell G, Ammon CE, Hengartner NW, Hyman JM. Estimation of the reproductive number of the Spanish flu epidemic in Geneva, Switzerland. Vaccine. 2006; 24: 6747-6750. Ref.: https://tinyurl.com/y2bttwzo

Hancock K, Veguilla V, Lu X, Zhong W, Butler EN, Sun H, et al. Cross-reactive antibody responses to the 2009 pandemic H1N1 influenza virus. N Engl J Med. 2009; 361: 1945-1952. Ref.: https://tinyurl.com/yysh3t8r

Gustafsson L, Sternad M. Bringing consistency to simulation of population models--Poisson simulation as a bridge between micro and macro simulation. Math Biosci. 2007; 209: 361-385. Ref.: https://tinyurl.com/y5e87pmw

Chowell G, Ammon CE, Hengartner NW, Hyman JM. Estimating the reproduction number from the initial phase of the Spanish flu pandemic waves in Geneva, Switzerland. Math Biosci Eng. 2007a; 4: 457-470. Ref.: https://tinyurl.com/y6x6bold

Chowell G, Nishiura H, Bettencourt LM. Comparative estimation of the reproduction number for pandemic influenza from daily case notification data. J R Soc Interface. 2007b; 4: 155-166. Ref.: https://tinyurl.com/y4zeo8xd

Longini IM, Jr., Halloran ME, Nizam A, Yang Y. Containing pandemic influenza with antiviral agents. Am J Epidemiol. 2004; 159: 623-633. Ref.: https://tinyurl.com/y2nd3pjs

Chowell G, Miller MA, Viboud C. Seasonal influenza in the United States, France, and Australia: transmission and prospects for control. Epidemiol Infect. 2008; 136: 852-864. Ref.: https://tinyurl.com/yyc2m2zo

Fraser C, Donnelly CA, Cauchemez S, Hanage WP, Van Kerkhove MD, Hollingsworth TD, et al. Pandemic potential of a strain of influenza A (H1N1): early findings. Science. 2009; 324: 1557-1561. Ref.: https://tinyurl.com/y2ypzwmd

Cauchemez S, Donnelly CA, Reed C, Ghani AC, Fraser C, Kent CK, et al. Household transmission of 2009 pandemic influenza A (H1N1) virus in the United States. N Engl J Med. 2009; 361: 2619-2627. Ref.: https://tinyurl.com/y4vhlpon