Abstract

Research Article

Novel Coronavirus Disease (COVID-19): An extensive study on evolution, global health, drug targets and vaccines

Abdul Ashik Khan, Tanmoy Dutta, Palas Mondal, Manab Mandal, Swapan Kumar Chowdhury, Minhajuddin Ahmed, Nabajyoti Baildya, Sourav Mazumdar and Narendra Nath Ghosh*

Published: 05 July, 2021 | Volume 5 - Issue 2 | Pages: 054-069

The Coronavirus disease-2019 (COVID-19), has become a worldwide pandemic and the scientific communities are struggling to find out the ultimate treatment strategies against this lethal virus, Severe Acute Respiratory Syndrome Coronavirus–2 (SARS-CoV-2). Presently, there is no potential chemically proven antiviral therapy available in the market which can effectively combat the infection caused by this deadly virus. Few vaccines are already developed but it is not clear to the scientific community how much efficient they are to combat SARS-CoV-2. Mode of transmission and symptoms of the disease are two important factors in this regard. Rapid diagnosis of the COVID-19 is very much important to stop its spreading. In this scenario, a complete study starting from symptoms of the disease to vaccine development including various SARS-CoV-2 detection techniques is very much required. In this review article, we have made a partial analysis on the origin, virology, global health, detection techniques, replication pathways, doses, mode of actions of probable drugs, and vaccine development for SARS-CoV-2.

Read Full Article HTML DOI: 10.29328/journal.ijcv.1001036 Cite this Article Read Full Article PDF

Keywords:

Novel Coronaviruses (nCoVs); World Health Organization; MERS-CoV; SARS-CoV; RNA-dependent RNA polymerase

References

  1. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020; 395: 470-473. PubMed: https://pubmed.ncbi.nlm.nih.gov/31986257/
  2. Lu H, Stratton CW, Tang YW. Outbreak of Pneumonia of Unknown Etiology in Wuhan China: the Mystery and the Miracle. J Med Virol. 2020; 92: 401-402. PubMed: https://pubmed.ncbi.nlm.nih.gov/31950516/
  3. Jiang F, Deng L, Zhang L, Cai Y, Cheung CW, et al. Review of the clinical characteristics of coronavirus disease 2019 (COVID-19). J Gen Intern Med. 2020; 35: 1545-1549.. PubMed: https://pubmed.ncbi.nlm.nih.gov/32133578/
  4. Tyrrell D, Bynoe M. Cultivation of viruses from a high proportion of patients with colds. Lancet.1966; 76-77. PubMed: https://pubmed.ncbi.nlm.nih.gov/4158999/
  5. McIntosh K, Dees JH, Becker WB, Kapikian AZ, Chanock RM. Recovery in tracheal organ cultures of novel viruses from patients with respiratory disease. Proc Nat Acad Sci U S A. 1967; 57: 933-940. PubMed: https://pubmed.ncbi.nlm.nih.gov/5231356/
  6. Bradburne A, Bynoe M, Tyrrell D. Effects of a" new" human respiratory virus in volunteers. Br Med J. 1967; 3: 767-769. PubMed: https://pubmed.ncbi.nlm.nih.gov/6043624/
  7. Stadler K, Masignani V, Eickmann M, Becker S, Abrignani S, et al. SARS—beginning to understand a new virus. Nat Rev Microbiol. 2003; 1: 209-218. PubMed: https://pubmed.ncbi.nlm.nih.gov/15035025/
  8. Peiris J, Lai S, Poon L, Guan Y, Yam L, et al. Coronavirus as a possible cause of severe acute respiratory syndrome. Lancet. 2003; 361: 1319-1325. PubMed: https://pubmed.ncbi.nlm.nih.gov/12711465/
  9. Donnelly CA, Ghani AC, Leung GM, Hedley AJ, Fraser C, et al. Epidemiological determinants of spread of causal agent of severe acute respiratory syndrome in Hong Kong. Lancet. 2003; 361: 1761-1766. PubMed: https://pubmed.ncbi.nlm.nih.gov/12781533/
  10. Tahir M, Shah SIA, Zaman G, Khan T. A Dynamic Compartmental Mathematical Model Describing. The Transmissibility Of MERS-CoV Virus In Public. Punjab Univ J Math. 2019; 51 57-71.
  11. Zumla A, Hui DS, Perlman S. Middle East respiratory syndrome. Lancet. 2015; 386: 995-1007. PubMed: https://pubmed.ncbi.nlm.nih.gov/26049252/
  12. Lin L, Li TS. Interpretation of "Guidelines for the Diagnosis and Treatment of Novel Coronavirus (2019-nCoV) Infection by the National Health Commission (Trial Version 5)". Zhonghua Yi Xue Za Zhi. 2020; 100: E001. PubMed: https://pubmed.ncbi.nlm.nih.gov/32033513/
  13. WHO Director-General’s opening remarks at the media briefing on COVID-19–11.2020.
  14. Wang C, Horby PW, Hayden FG, Gao GF. A novel coronavirus outbreak of global health concern. Lancet. 2020; 395: 470-473. PubMed: https://pubmed.ncbi.nlm.nih.gov/31986257/
  15. Ji W, Wang W, Zhao X, Zai J, Li X. Cross-species transmission of the newly identified coronavirus 2019-nCoV. J Med Virol. 2020; 92: 433-440. PubMed: https://pubmed.ncbi.nlm.nih.gov/31967321/
  16. Priyanka, Choudhary OP, Singh I, Patra G. Aerosol transmission of SARS-CoV-2: The unresolved paradox. Travel Med Infect Dis. 2020. PubMed: https://pubmed.ncbi.nlm.nih.gov/32891726/
  17. Sahin AR, Erdogan A, Agaoglu PM, Dineri Y, Cakirci AY, et al. 2019 Novel Coronavirus (COVID-19) Outbreak: A Review of the Current Literature. EJMO. 2020; 4: 1-7.
  18. Dietz L, Horve PF, Coil D, Fretz M, Van Den Wymelenberg K. 2019 Novel Coronavirus (COVID-19) Outbreak: A Review of the Current Literature and Built Environment (BE) Considerations to Reduce Transmission. ASM J.2020; 5: e00245-20.
  19. Thompson R. Pandemic potential of 2019-nCoV. Lancet Infect Dis. 2020; 20: 280. PubMed: https://pubmed.ncbi.nlm.nih.gov/32043978/
  20. Leonardi D, Polidori C, Polidori P. The healthcare and pharmaceutical vulnerability emerging from the new Coronavirus outbreak. Eur J Hospital Pharm. 2020; 129-130. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7223278/
  21. Zaki AM, Van Boheemen S, Bestebroer TM, Osterhaus AD, Fouchier RA. Isolation of a novel coronavirus from a man with pneumonia in Saudi Arabia. New Engl J Med. 2012; 367: 1814-1820. PubMed: https://pubmed.ncbi.nlm.nih.gov/23075143/
  22. Chu H, Zhou J, Wong BHY, Li C, Cheng ZS, et al. Productive replication of Middle East respiratory syndrome coronavirus in monocyte-derived dendritic cells modulates innate immune response. Virology. 2014; 454: 197-205. PubMed: https://pubmed.ncbi.nlm.nih.gov/24725946/
  23. Li W, Shi Z, Yu M, Ren W, Smith C, et al. Bats are natural reservoirs of SARS-like coronaviruses. Science. 2005; 310: 676-679. PubMed: https://pubmed.ncbi.nlm.nih.gov/16195424/
  24. Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, et al. Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 2013; 503: 535-538. PubMed: https://pubmed.ncbi.nlm.nih.gov/24172901/
  25. Luo H, Tang Ql, Shang YX, Liang SB, Yang M, et al. Can Chinese medicine be used for prevention of corona virus disease 2019 (COVID-19)? A review of historical classics, research evidence and current prevention programs. Chin J Integrat Med. 2020; 26: 243-250. PubMed: https://pubmed.ncbi.nlm.nih.gov/32065348/
  26. Lau JT, Leung P, Wong E, Fong C, Cheng K, et al. The use of an herbal formula by hospital care workers during the severe acute respiratory syndrome epidemic in Hong Kong to prevent severe acute respiratory syndrome transmission, relieve influenza-related symptoms, and improve quality of life: a prospective cohort study. J Altern Complement Med. 2005; 11: 49-55. PubMed: https://pubmed.ncbi.nlm.nih.gov/15750363/
  27. Prompetchara E, Ketloy C, Palaga T. Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. Asian Pac J Allergy Immunol. 2020; 38 1-9. PubMed: https://pubmed.ncbi.nlm.nih.gov/32105090/
  28. Mandal M, Chowdhury SK, Khan AA, Baildya N, Dutta T, et al. Inhibitory efficacy of RNA virus drugs against SARS-CoV-2 proteins: an extensive study. J Mole Struct. 2021; 1234: 130152. PubMed: https://pubmed.ncbi.nlm.nih.gov/33678903/
  29. Dutta T, Ghorai S, Khan AA, Baildya N, Ghosh NN. 2021 Screening of potential anti-HIV compounds from Achyranthes aspera extracts for SARS-CoV-2: An insight from molecular docking study. J Physics: Conference Series. IOP Publishing.
  30. Dutta T, Baildya N, Khan AA, Ghosh NN. Inhibitory effect of anti-HIV compounds extracted from Indian medicinal plants to retard the replication and transcription process of SARS-CoV-2: an insight from molecular docking and MD-simulation studies. Netw Model Anal Health Inform Bioinform. 2021; 10: 32. PubMed: https://pubmed.ncbi.nlm.nih.gov/33948424/
  31. Huang C, Wang Y, Li X, Ren L, Zhao J, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395: 497-506. PubMed: https://pubmed.ncbi.nlm.nih.gov/31986264/
  32. Baildya N, Ghosh NN, Chattopadhyay AP. Inhibitory activity of hydroxychloroquine on COVID-19 main protease: An insight from MD-simulation studies. J Mole Struct. 2020; 1219: 128595. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7266611/
  33. Baildya N, Ghosh NN, Chattopadhyay AP. Inhibitory capacity of chloroquine against SARS-COV-2 by effective binding with angiotensin converting enzyme-2 receptor: An insight from molecular docking and MD-simulation studies. J Mole Struct. 2021; 129891. PubMed: https://pubmed.ncbi.nlm.nih.gov/33518803/
  34. Baildya N, Khan AA, Ghosh NN, Dutta T, Chattopadhyay AP. Screening of potential drug from Azadirachta Indica (Neem) extracts for SARS-CoV-2: An insight from molecular docking and MD-simulation studies. J Mole Struct. 2021; 1227 129390. PubMed: https://pubmed.ncbi.nlm.nih.gov/33041371/
  35. Khan AA, Baildya N, Dutta T, Ghosh NN. Inhibitory efficiency of potential drugs against SARS-CoV-2 by blocking human angiotensin converting enzyme-2: Virtual screening and molecular dynamics study. Microb Pathog. 2021; 104762. PubMed: https://pubmed.ncbi.nlm.nih.gov/33524563/
  36. Novel Coronavirus (2019-nCoV). Situation Report - 2. 2020. https://www.who.int/docs/default-source/coronaviruse/situation-reports/20200122-sitrep-2-2019-ncov.pdf
  37. Hui DSC, Zumla A. Severe Acute Respiratory Syndrome: Historical, Epidemiologic, and Clinical Features. Infect Dis Clin North Am. 2019; 33: 869-889. PubMed: https://pubmed.ncbi.nlm.nih.gov/31668196/
  38. Holshue ML, De Bolt C, Lindquist S, Lofy KH, Wiesman J, et al. First Case of 2019 Novel Coronavirus in the United States. New Engl J Med. 2020; 382: 929-936. PubMed: https://pubmed.ncbi.nlm.nih.gov/32004427/
  39. Wang D, Hu B, Hu C, Zhu F, Liu X, et al. Clinical Characteristics of 138 Hospitalized Patients With 2019 Novel Coronavirus-Infected Pneumonia in Wuhan, China. JAMA. 2020; 323: 1061-1069. PubMed: https://pubmed.ncbi.nlm.nih.gov/32031570/
  40. Torales J, Castaldelli-Maia JM, Ventriglio A. The outbreak of COVID-19 coronavirus and its impact on global mental health. Int J Soc Psychiatry. 2020; 66: 317-320. PubMed: https://pubmed.ncbi.nlm.nih.gov/32233719/
  41. Li Q, Guan X, Wu P, Wang X, Zhou L, et al. Early Transmission Dynamics in Wuhan, China, of Novel Coronavirus–Infected Pneumonia. New Engl J Med. 2020; 382: 1199-1207. PubMed: https://pubmed.ncbi.nlm.nih.gov/31995857/
  42. Van Doremalen N, Bushmaker T, Morris DH, Holbrook MG, Gamble A, et al. Aerosol and Surface Stability of SARS-CoV-2 as Compared with SARS-CoV-1. New Engl J Med. 2020; 382: 1564-1567. PubMed: https://pubmed.ncbi.nlm.nih.gov/32182409/
  43. Van Zyl M, Fielding BC. The Coronavirus Nucleocapsid Is a Multifunctional Protein. Viruses. 2014; 6: 2991–3018. PubMed: https://pubmed.ncbi.nlm.nih.gov/25105276/
  44. Li F. Structure, function, and evolution of coronavirus spike proteins. Ann Rev Virol. 2016; 3: 237-261. PubMed: https://pubmed.ncbi.nlm.nih.gov/27578435/
  45. Guo Y, Korteweg C, McNutt MA, Gu J. Pathogenetic mechanisms of severe acute respiratory syndrome. Virus Res. 2008; 133: 4-12. PubMed: https://pubmed.ncbi.nlm.nih.gov/17825937/
  46. Luk HKH, Li X, Fung J, Lau SKP, Woo PCY. Molecular epidemiology, evolution and phylogeny of SARS coronavirus. Infect Genet Evol. 2019; 71: 21-30. PubMed: https://pubmed.ncbi.nlm.nih.gov/30844511/
  47. Coronavirinae in Viral Zone. 2019. https://viralzone.expasy.org/785
  48. Subissi L, Posthuma CC, Collet A, Zevenhoven-Dobbe JC, Gorbalenya AE, et al. One severe acute respiratory syndrome coronavirus protein complex integrates processive RNA polymerase and exonuclease activities. Proc Nati Acad Sci. 2014; 111: E3900-E3909. PubMed: https://pubmed.ncbi.nlm.nih.gov/25197083/
  49. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature.2003; 426: 450-454. PubMed: https://pubmed.ncbi.nlm.nih.gov/14647384/
  50. Te Velthuis AJ, van den Worm SH, Snijder EJ. The SARS-coronavirus nsp7+ nsp8 complex is a unique multimeric RNA polymerase capable of both de novo initiation and primer extension. Nucleic Acids Res. 2012; 40: 1737-1747. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3287201/
  51. Stobart CC, Sexton NR, Munjal H, Lu X, Molland KL, et al. Chimeric exchange of coronavirus nsp5 proteases (3CLpro) identifies common and divergent regulatory determinants of protease activity. J Virol. 2013; 87: 12611-12618. PubMed: https://pubmed.ncbi.nlm.nih.gov/24027335/
  52. Wang H, Xue S, Yang H, Chen C. Recent progress in the discovery of inhibitors targeting coronavirus proteases. Virologica Sinica. 2016; 31: 24-30. PubMed: https://pubmed.ncbi.nlm.nih.gov/26920707/
  53. Egloff MP, Ferron F, Campanacci V, Longhi S, Rancurel C, et al. The severe acute respiratory syndrome-coronavirus replicative protein nsp9 is a single-stranded RNA-binding subunit unique in the RNA virus world. Proc Nati Acad Sci.2004; 101: 3792-3796. PubMed: https://pubmed.ncbi.nlm.nih.gov/15007178/
  54. Hu T, Chen C, Li H, Dou Y, Zhou M, et al. Structural basis for dimerization and RNA binding of avian infectious bronchitis virus nsp9. Protein Sci. 2017; 26: 1037-1048. PubMed: https://pubmed.ncbi.nlm.nih.gov/28257598/
  55. Zhang M, Li X, Deng Z, Chen Z, Liu Y, et al. Structural biology of the arterivirus nsp11 endoribonucleases. J Virol. 2017; 91: e01309-13016. PubMed: https://pubmed.ncbi.nlm.nih.gov/27795409/
  56. Bouvet M, Lugari A, Posthuma CC, Zevenhoven JC, Bernard S, et al. Coronavirus Nsp10, a critical co-factor for activation of multiple replicative enzymes. J Biolog Chem. 2014; 289: 25783-25796. PubMed: https://pubmed.ncbi.nlm.nih.gov/25074927/
  57. Narayanan K, Maeda A, Maeda J, Makino S. Characterization of the coronavirus M protein and nucleocapsid interaction in infected cells. J Virol. 2000; 74: 8127-8134. PubMed: https://pubmed.ncbi.nlm.nih.gov/10933723/
  58. de Wit E, van Doremalen N, Falzarano D, Munster VJ. SARS and MERS: recent insights into emerging coronaviruses. Nat Rev Microbiol. 2016; 14: 523-534. PubMed: https://pubmed.ncbi.nlm.nih.gov/27344959/
  59. Nieto-Torres JL, DeDiego ML, Álvarez E, Jiménez-Guardeño JM, Regla-Nava JA, et al. Subcellular location and topology of severe acute respiratory syndrome coronavirus envelope protein. Virology. 2011; 415: 69-82. PubMed: https://pubmed.ncbi.nlm.nih.gov/21524776/
  60. Huang C, Wang Y, Li X, Ren L, Zhao J, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395: 497-506. PubMed: https://pubmed.ncbi.nlm.nih.gov/31986264/
  61. Yang L, Tu L. Implications of gastrointestinal manifestations of COVID-19.Lancet Gastroenterol Hepatol. 2020; 5: 629-630. PubMed: https://pubmed.ncbi.nlm.nih.gov/32405602/
  62. Nguyen T, Duong Bang D, Wolff A. 2019 Novel Coronavirus Disease (COVID-19): Paving the Road for Rapid Detection and Point-of-Care Diagnostics. Micromachines. 2020; 11: 306. PubMed: https://pubmed.ncbi.nlm.nih.gov/32183357/
  63. Isere EE, Fatiregun AA, Ajayi IO. An overview of disease surveillance and notification system in Nigeria and the roles of clinicians in disease outbreak prevention and control. Niger Med J. 2015; 56: 161-168. PubMed: https://pubmed.ncbi.nlm.nih.gov/26229222/
  64. Jones G, Le Hello S, Jourdan-da Silva N, Vaillant V, De Valk H, et al. The French human Salmonella surveillance system: evaluation of timeliness of laboratory reporting and factors associated with delays, 2007 to 2011. Eurosurveillance. 2014; 19: 20664. PubMed: https://pubmed.ncbi.nlm.nih.gov/24434174/
  65. Nguyen T, Zoëga Andreasen S, Wolff A, Duong Bang D. From lab on a chip to point of care devices: The role of open source microcontrollers. Micromachines. 2018; 9: 403. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC6187319/
  66. Corman VM, Landt O, Kaiser M, Molenkamp R, Meijer A, et al. Detection of 2019 novel coronavirus (2019-nCoV) by real-time RT-PCR. Eurosurveillance. 2020; 25; 2000045. PubMed: https://pubmed.ncbi.nlm.nih.gov/31992387/
  67. Chu DK, Pan Y, Cheng SM, Hui KP, Krishnan P, et al. Molecular diagnosis of a novel coronavirus (2019-nCoV) causing an outbreak of pneumonia. Clin Chem. 2020; 66: 549-555. PubMed: https://pubmed.ncbi.nlm.nih.gov/32031583/
  68. Bruning A, Aatola H, Toivola H, Ikonen N, Savolainen-Kopra C, et al. Rapid detection and monitoring of human coronavirus infections. New Micro New Infect. 2018; 24: 52-55. PubMed: https://pubmed.ncbi.nlm.nih.gov/29872531/
  69. Gaunt ER, Hardie A, Claas EC, Simmonds P, Templeton KE. Epidemiology and clinical presentations of the four human coronaviruses 229E, HKU1, NL63, and OC43 detected over 3 years using a novel multiplex real-time PCR method. J Clin Microbiol. 2010; 48: 2940-2947. PubMed: https://pubmed.ncbi.nlm.nih.gov/20554810/
  70. Cho CH, Lee CK, Nam MH, Yoon SY, Lim CS, et al. Evaluation of the AdvanSure™ real-time RT-PCR compared with culture and Seeplex RV15 for simultaneous detection of respiratory viruses. Diagnostic Microbiol Infect Disease. 2014; 79: 14-18. PubMed: https://pubmed.ncbi.nlm.nih.gov/24582583/
  71. Nagamine K, Hase T, Notomi T. Accelerated reaction by loop-mediated isothermal amplification using loop primers. Mole Cell Pro. 2002; 16: 223-229. PubMed: https://pubmed.ncbi.nlm.nih.gov/12144774/
  72. Galvez LC, Barbosa CFC, Koh RBL, Aquino VM. Loop-mediated isothermal amplification (LAMP) assays for the detection of abaca bunchy top virus and banana bunchy top virus in abaca. Crop Protection. 2020; 131: 105101.
  73. Gootenberg JS, Abudayyeh OO, Kellner MJ, Joung J, Collins JJ, et al. Multiplexed and portable nucleic acid detection platform with Cas13, Cas12a, and Csm6. Science. 2018; 360: 439-444. PubMed: https://pubmed.ncbi.nlm.nih.gov/29449508/
  74. Broughton JP, Deng X, Yu G, Fasching CL, Servellita V, et al. CRISPR–Cas12-based detection of SARS-CoV-2. Nat Biotechnol. 2020; 38: 870-874. PubMed: https://pubmed.ncbi.nlm.nih.gov/32300245/
  75. Drobysh M, Ramanaviciene A, Viter R, Ramanavicius A. Affinity Sensors for the Diagnosis of COVID-19. Micromachines. 2021; 12: 390. PubMed: https://pubmed.ncbi.nlm.nih.gov/33918184/
  76. Dronina J, Bubniene US, Ramanavicius A. The application of DNA polymerases and Cas9 as representative of DNA-modifying enzymes group in DNA sensor design. Biosens Bioelectron. 2020; 175: 112867. PubMed: https://pubmed.ncbi.nlm.nih.gov/33303323/
  77. Plikusiene I, Maciulis V, Ramanaviciene A, Balevicius Z, Buzavaite-Verteliene E, et al. Evaluation of kinetics and thermodynamics of interaction between immobilized SARS-CoV-2 nucleoprotein and specific antibodies by total internal reflection ellipsometry. J Colloid Interface Sci. 2021; 594: 195-203. PubMed: https://pubmed.ncbi.nlm.nih.gov/33761394/
  78. Mankar PSN. Review on recent emergence of novel corona virus 2019. World J Pharmaceut Res. 2020; 9: 2268-2273.
  79. https://www.aljazeera.com/news/2020/02/long-covid-19-outbreak-stay-protected-200212140216674.html?xif=.
  80. Komabayashi K, Seto J, Matoba Y, Aoki Y, Tanaka S, et al. Seasonality of human coronavirus OC43, NL63, HKU1, and 229E infection in Yamagata, Japan, 2010–2019. Japanese J Infect Dis. 2020; 525.
  81. https://www.nytimes.com/article/coronavirus-body-symptoms.html
  82. Geographical distribution of 2019- nCov cases. European Centre for Disease Prevention and Control data. An agency of the European Union. 2020.
  83. Li Q, Guan X, Wu P, Wang X, Zhou L, et al. Early transmission dynamics in Wuhan, China, of novel coronavirus–infected pneumonia. New Engl J Med. 2020; 382: 1199-1207.
  84. Novel Coronavirus. Prevention and Treatment. https://www.cdc.gov/coronavirus/2019-ncov/about/prevention-treatment.html.2019
  85. Report of the who-china joint mission on coronavirus disease 2019 (covid-19). Geneva: World Health Organization. 2020.
  86. Hui DS, EI A, Madani TA, Ntoumi F, Kock R, Dar O, et al. The continuing 2019-nCoV epidemic threat of novel coronaviruses to global health - The latest 2019 novel coronavirus outbreak in Wuhan, China. Int J Infect Dis. 2020; 91: 264-266. PubMed: https://pubmed.ncbi.nlm.nih.gov/31953166/
  87. Arabi YM, Asiri AY, Assiri AM, Aziz Jokhdar HA, Alothman A, et al. Treatment of Middle East respiratory syndrome with a combination of lopinavir/ritonavir and interferon-β1b (MIRACLE trial): statistical analysis plan for a recursive two-stage group sequential randomized controlled trial. Trials. 2018; 19: 81. PubMed: https://pubmed.ncbi.nlm.nih.gov/29382391/
  88. Cockrell AS, Yount BL, Scobey T, Jensen K, Douglas M, et al. A mouse model for MERS coronavirus-induced acute respiratory distress syndrome. Nat Microbiol. 2016; 2 16226. PubMed: https://pubmed.ncbi.nlm.nih.gov/27892925/
  89. Warren TK, Jordan R, Lo MK, Ray AS, Mackman RL, et al. Therapeutic efficacy of the small molecule GS-5734 against Ebola virus in rhesus monkeys. Nature. 2016; 531: 381-385. PubMed: https://pubmed.ncbi.nlm.nih.gov/26934220/
  90. Emergencies preparedness, response. Pneumonia of unknown origin – China. Disease outbreak news. https:// HYPERLINK"http://www.who.int/csr/don/12-january-2020-novelcoronavirus-china/en/"www.who.int/csr/don/12-january-2020-novel-coronavirus-china/en/ 2020
  91. Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, et al. Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 2003; 426: 450-454. PubMed: https://pubmed.ncbi.nlm.nih.gov/14647384/
  92. Yount B, Curtis KM, Fritz EA, Hensley LE, Jahrling PB, et al. Reverse genetics with a full-length infectious cDNA of severe acute respiratory syndrome coronavirus. Proceedings of the National Academy of Sciences.2003; 100 (22): 12995-13000. PubMed: https://pubmed.ncbi.nlm.nih.gov/14569023/
  93. Chen N, Zhou M, Dong X, Qu J, Gong F, et al. Epidemiological and clinical characteristics of 99 cases of 2019 novel coronavirus pneumonia in Wuhan, China: a descriptive study. Lancet. 2020; 395: 507-513. PubMed: https://pubmed.ncbi.nlm.nih.gov/32007143/
  94. Böttcher E, Freuer C, Steinmetzer T, Klenk HD, Garten W. MDCK cells that express proteases TMPRSS2 and HAT provide a cell system to propagate influenza viruses in the absence of trypsin and to study cleavage of HA and its inhibition. Vaccine. 2009; 27: 6324-6329. PubMed: https://pubmed.ncbi.nlm.nih.gov/19840668/
  95. Glowacka I, Bertram S, Müller MA, Allen P, Soilleux E, et al. Evidence that TMPRSS2 activates the severe acute respiratory syndrome coronavirus spike protein for membrane fusion and reduces viral control by the humoral immune response. J Virol. 2011; 85: 4122-4134. PubMed: https://pubmed.ncbi.nlm.nih.gov/21325420/
  96. Wu C, Liu Y, Yang Y, Zhang P, Zhong W, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B. 2020; 10: 766-788. PubMed: https://pubmed.ncbi.nlm.nih.gov/32292689/
  97. Gao J, Tian Z, Yang X. Breakthrough: Chloroquine phosphate has shown apparent efficacy in treatment of COVID-19 associated pneumonia in clinical studies. Bioscience Trends. 2020; 14: 72-73. PubMed: https://pubmed.ncbi.nlm.nih.gov/32074550/
  98. Yao X, Ye F, Zhang M, Cui C, Huang B, et al. In Vitro Antiviral Activity and Projection of Optimized Dosing Design of Hydroxychloroquine for the Treatment of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2). Clin Infect Dis. 2020; 71: 732-739. PubMed: https://pubmed.ncbi.nlm.nih.gov/32150618/
  99. German Researchers Identify Japanese Drug, Camostat Mesylate That Could Be Repurposed To Treat Covid-19. Coronavirus Drug Research. 2020. https://www.thailandmedical.news/news/coronavirus-drug-research-german-researchers-identify-japanese-drug,-camostat-mesylate-that-could-be-repurposed-to-treat-covid-19
  100. Ikeda S, Manabe M, Muramatsu T, Takarnori K, Ogawa H. Protease inhibitor therapy for recessive dystrophic epidermolysis bullosa: in vitro effect and clinical trial with camostat mesylate. J Am Acad Dermatol.1988; 18: 1246-1252. PubMed: https://pubmed.ncbi.nlm.nih.gov/3385039/
  101. Rossignol JF. Nitazoxanide, a new drug candidate for the treatment of Middle East respiratory syndrome coronavirus. J Infect Public Health. 2016; 9: 227-230. PubMed: https://pubmed.ncbi.nlm.nih.gov/27095301/
  102. Wang M, Cao R, Zhang L, Yang X, Liu J, et al. Remdesivir and chloroquine effectively inhibit the recently emerged novel coronavirus (2019-nCoV) in vitro. Cell Res. 2020; 30: 269-271. PubMed: https://pubmed.ncbi.nlm.nih.gov/32020029/
  103. Wu C, Liu Y, Yang Y, Zhang P, Zhong W, et al. Analysis of therapeutic targets for SARS-CoV-2 and discovery of potential drugs by computational methods. Acta Pharmaceutica Sinica B. 2020; 10: 766-788. PubMed: https://pubmed.ncbi.nlm.nih.gov/32292689/
  104. Ito K, Yotsuyanagi H, Sugiyama M, Yatsuhashi H, Karino Y, et al. Geographic distribution and characteristics of genotype A hepatitis B virus infection in acute and chronic hepatitis B patients in Japan. J Gastroenterol Hepatol. 2016; 31: 180-189.
  105. Asakura H, Ogawa H. Potential of Heparin and Nafamostat Combination Therapy for COVID-19. J Thrombosis Haemostasis. 2020; 18: 1521-1522. PubMed: https://pubmed.ncbi.nlm.nih.gov/32302456/
  106. Du L, Yang Y, Zhou Y, Lu L, Li F, et al. MERS-CoV spike protein: a key target for antivirals. Expert Opin Ther Targets.. 2017; 21: 131-143. PubMed: https://pubmed.ncbi.nlm.nih.gov/27936982/
  107. Lin SC, Ho CT, Chuo WH, Li S, Wang TT, et al. Effective inhibition of MERS-CoV infection by resveratrol. BMC Infect Dis. 2017; 17: 144. PubMed: https://pubmed.ncbi.nlm.nih.gov/28193191/
  108. Apaydın ÇB, Cesur N, Stevaert A, Naesens L, Cesur Z. Synthesis and anti‐coronavirus activity of a series of 1‐thia‐4‐azaspiro [4.5] decan‐3‐one derivatives. Archiv der Pharmazie. 2019; 352: 1800330. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7161747/
  109. Chen F, Chan KH, Jiang Y, Kao RY, Lu HT, et al. In vitro susceptibility of 10 clinical isolates of SARS coronavirus to selected antiviral compounds. J Clin Virol. 2004; 31: 69-75. PubMed: https://pubmed.ncbi.nlm.nih.gov/15288617/
  110. Yao TT, Qian JD, Zhu WY, Wang Y, Wang GQ. A systematic review of lopinavir therapy for SARS coronavirus and MERS coronavirus-A possible reference for coronavirus disease-19 treatment option. J Med Virol. 2020; 92: 556-563. PubMed: https://pubmed.ncbi.nlm.nih.gov/32104907/
  111. Liu X, Wang XJ. Potential inhibitors for 2019-nCoV coronavirus M protease from clinically approved medicines. J Genet Genomics. 2020; 47: 119-121. PubMed: https://pubmed.ncbi.nlm.nih.gov/32173287/
  112. Chu CM, Cheng VC, Hung IF, Wong MM, Chan KH, et al. Role of lopinavir/ritonavir in the treatment of SARS: initial virological and clinical findings. Thorax. 2004; 59: 252-256. PubMed: https://pubmed.ncbi.nlm.nih.gov/14985565/
  113. N H C N o t P s R o. The diagnosis and treatment guide of COVID-19 pneumonia caused by new coronavirus infection WHO. 2020; 7.
  114. Xu Z, Peng C, Shi Y, Zhu Z, Mu K, et al. Nelfinavir was predicted to be a potential inhibitor of 2019-nCov main protease by an integrative approach combining homology modelling, molecular docking and binding free energy calculation. BioRxiv. 2020.
  115. Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, et al. Coronavirus Susceptibility to the Antiviral Remdesivir (GS-5734) Is Mediated by the Viral Polymerase and the Proofreading Exoribonuclease. mBio. 2018; 9: e00221-00218. PubMed: https://pubmed.ncbi.nlm.nih.gov/29511076/
  116. Agostini ML, Andres EL, Sims AC, Graham RL, Sheahan TP, et al. Coronavirus susceptibility to the antiviral remdesivir (GS-5734) is mediated by the viral polymerase and the proofreading exoribonuclease. MBio.2018; 9: e00221-00218. PubMed: https://pubmed.ncbi.nlm.nih.gov/29511076/
  117. Al-Tawfiq JA, Momattin H, Dib J, Memish ZA. Ribavirin and interferon therapy in patients infected with the Middle East respiratory syndrome coronavirus: an observational study. Int J Infect Dis. 2014; 20: 42-46. PubMed: https://pubmed.ncbi.nlm.nih.gov/24406736/
  118. Arabi YM, Shalhoub S, Mandourah Y, Al-Hameed F, Al-Omari A, et al. Ribavirin and Interferon Therapy for Critically Ill Patients With Middle East Respiratory Syndrome: A Multicenter Observational Study. Clin Infect Dis. 2019; 70: 1837-1844. PubMed: https://pubmed.ncbi.nlm.nih.gov/31925415/
  119. Chan JF, Chan KH, Kao RY, To KK, Zheng BJ, et al. Broad-spectrum antivirals for the emerging Middle East respiratory syndrome coronavirus. J Infection. 2013; 67: 606-616. PubMed: https://pubmed.ncbi.nlm.nih.gov/24096239/
  120. Adedeji AO, Singh K, Kassim A, Coleman CM, Elliott R, et al. Evaluation of SSYA10-001 as a replication inhibitor of severe acute respiratory syndrome, mouse hepatitis, and Middle East respiratory syndrome coronaviruses. Antimicrob Agents Chemother. 2014; 58: 4894-4898. PubMed: https://pubmed.ncbi.nlm.nih.gov/24841268/
  121. Adedeji AO, Singh K, Calcaterra NE, DeDiego ML, Enjuanes L, et al. Severe acute respiratory syndrome coronavirus replication inhibitor that interferes with the nucleic acid unwinding of the viral helicase. Antimicrobial agents and chemotherapy. 2012; 56: 4718-4728. PubMed: https://pubmed.ncbi.nlm.nih.gov/22733076/
  122. Zaher NH, Mostafa MI, Altaher AY. Design, synthesis and molecular docking of novel triazole derivatives as potential CoV helicase inhibitors. Acta Pharmaceutica. 2020; 70: 145-159. PubMed: https://pubmed.ncbi.nlm.nih.gov/31955138/
  123. Kim MK, Yu MS, Park HR, Kim KB, Lee C, et al. 2, 6-Bis-arylmethyloxy-5-hydroxychromones with antiviral activity against both hepatitis C virus (HCV) and SARS-associated coronavirus (SCV). Eur J Med Chem. 2011; 46: 5698-5704. PubMed: https://pubmed.ncbi.nlm.nih.gov/21925774/
  124. Megan Melody JN, Hastings J, Propst J, Smerina M, Mendez J, et al. Case report: use of lenzilumab and tocilizumab for the treatment of coronavirus disease 2019. Immunotherapy. 2020; 12: 1121–1126. PubMed: https://pubmed.ncbi.nlm.nih.gov/32546029/
  125. Clinicl Trials Arena. 2020. https://www.clinicaltrialsarena.com/news/pfizer-data-azithromycin-covid-19-trial/
  126. Gautret P, Lagier JC, Parola P, Hoang VT, Meddeb L, et al. .Hydroxychloroquine and azithromycin as a treatment of COVID-19: results of an open-label non-randomized clinical trial. Int J Antimicrob Agents. 2020; 105949. PubMed: https://pubmed.ncbi.nlm.nih.gov/32205204/
  127. Amsden GW. Anti-inflammatory effects of macrolides--an underappreciated benefit in the treatment of community-acquired respiratory tract infections and chronic inflammatory pulmonary conditions? J Antimicrob Chemother. 2005; 55: 10-21. PubMed: https://pubmed.ncbi.nlm.nih.gov/15590715/
  128. Beigelman A, Mikols CL, Gunsten SP, Cannon CL, Brody SL, et al. Azithromycin attenuates airway inflammation in a mouse model of viral bronchiolitis. Respir Res. 2010; 11: 90. PubMed: https://pubmed.ncbi.nlm.nih.gov/20591166/
  129. Zarogoulidis P, Papanas N, Kioumis I, Chatzaki E, Maltezos E, et al. Macrolides: from in vitro anti-inflammatory and immunomodulatory properties to clinical practice in respiratory diseases. Eur J Clin Pharmacol. 2012; 68: 479-503. PubMed: https://pubmed.ncbi.nlm.nih.gov/22105373/
  130. Boriskin Y, Leneva I, Pecheur EI, Polyak S. Arbidol: a broad-spectrum antiviral compound that blocks viral fusion. Current Med Chem. 2008; 15: 997-1005. PubMed: https://pubmed.ncbi.nlm.nih.gov/18393857/
  131. Richardson P, Griffin I, Tucker C, Smith D, Oechsle O, et al. Baricitinib as potential treatment for 2019-nCoV acute respiratory disease. Lancet. 2020; 395: e30-e31. PubMed: https://pubmed.ncbi.nlm.nih.gov/32032529/
  132. Bakri SJ, Snyder MR, Reid JM, Pulido JS, Singh RJ. Pharmacokinetics of intravitreal bevacizumab (Avastin). Ophthalmology. 2007; 114: 855-859. PubMed: https://pubmed.ncbi.nlm.nih.gov/17467524/
  133. https://www.tizianalifesciences.com/our-drugs/anti-il-6r/
  134. Iranbakhsh A. Potential applications of Plant Biotechnology against SARS-CoV-2. Iranian J Biol. 2021; 4: 89-98.
  135. Genovese MC, Fleischmann R, Kivitz AJ, Rell‐Bakalarska M, Martincova R, et al. Sarilumab plus methotrexate in patients with active rheumatoid arthritis and inadequate response to methotrexate: results of a phase III study. Arthritis Rheumatol. 2015; 67: 1424-1437. PubMed: https://pubmed.ncbi.nlm.nih.gov/25733246/
  136. Wrapp D, Wang N, Corbett KS, Goldsmith JA, Hsieh CL, et al. Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. Science. 2020; 367: 1260-1263. PubMed: https://pubmed.ncbi.nlm.nih.gov/32075877/
  137. Paules CI, Marston HD, Fauci AS. Coronavirus infections—more than just the common cold. JAMA. 2020; 323: 707-708. PubMed: https://pubmed.ncbi.nlm.nih.gov/31971553/
  138. Zhang J, Zeng H, Gu J, Li H, Zheng L, Zou Q. Progress and prospects on vaccine development against SARS-CoV-2. Vaccines. 2020; 8: 153. PubMed: https://pubmed.ncbi.nlm.nih.gov/32235387/
  139. Craven J. COVID-19 vaccine tracker. Regulatory Affairs Professionals Society. 2021. https://www.raps.org/news-and-articles/news-articles/2020/3/covid-19-vaccine-tracker

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Figure 1

Figure 3

Figure 1

Figure 4

Figure 1

Figure 5

Figure 1

Figure 6

Figure 1

Figure 7

Figure 1

Figure 8

Figure 1

Figure 9

Figure 1

Figure 10

Figure 1

Figure 11

Figure 1

Figure 12

Figure 1

Figure 13

Figure 1

Figure 14

Similar Articles

Recently Viewed

  • Difference between conventional and modern methods for examination of fingerprints
    Ambati Ramesh Babu* Ambati Ramesh Babu*. Difference between conventional and modern methods for examination of fingerprints. J Forensic Sci Res. 2021: doi: 10.29328/journal.jfsr.1001025; 5: 037-040
  • Characterization and virulence determination of Colletotrichum kahawae isolates from Gidami, Western Ethiopia
    Zenebe W*, Daniel T and Weyessa G Zenebe W*,Daniel T,Weyessa G. Characterization and virulence determination of Colletotrichum kahawae isolates from Gidami, Western Ethiopia. J Plant Sci Phytopathol. 2021: doi: 10.29328/journal.jpsp.1001054; 5: 004-013
  • Statistical Mathematical Analysis of COVID-19 at World Level
    Marín-Machuca Olegario*, Carlos Enrique Chinchay-Barragán, Moro-Pisco José Francisco, Vargas-Ayala Jessica Blanca, Machuca-Mines José Ambrosio, María del Pilar Rojas-Rueda and Zambrano-Cabanillas Abel Walter Marín-Machuca Olegario*, Carlos Enrique Chinchay-Barragán, Moro-Pisco José Francisco, Vargas-Ayala Jessica Blanca, Machuca-Mines José Ambrosio, María del Pilar Rojas-Rueda, Zambrano-Cabanillas Abel Walter. Statistical Mathematical Analysis of COVID-19 at World Level. Int J Phys Res Appl. 2024: doi: 10.29328/journal.ijpra.1001082; 7: 040-047
  • Rida Herbal Bitters Improve Cardiovascular Function in High-fat Diet/Streptozotocin-induced Diabetic Rats
    Folasade Omobolanle Ajao*, Damilola Ayodeji Balogun, Marcus Olaoy Iyedupe, Ayobami Olagunju, Esther Oparinde, Luqman Adeniji and Victor Abulude and Funmilayo Elizabeth Olaleye Folasade Omobolanle Ajao*, Damilola Ayodeji Balogun, Marcus Olaoy Iyedupe, Ayobami Olagunju, Esther Oparinde, Luqman Adeniji, Victor Abulude and Funmilayo Elizabeth Olaleye. Rida Herbal Bitters Improve Cardiovascular Function in High-fat Diet/Streptozotocin-induced Diabetic Rats. J Cardiol Cardiovasc Med. 2024: doi: 10.29328/journal.jccm.1001177; 9: 044-051
  • Antibacterial Screening of Lippia origanoides Essential Oil on Gram-negative Bacteria
    Rodrigo Marcelino Zacarias de Andrade, Bernardina de Paixão Santos, Roberson Matteus Fernandes Silva, Mateus Gonçalves Silva*, Igor de Sousa Oliveira, Sávio Benvindo Ferreira and Rafaelle Cavalcante Lira Rodrigo Marcelino Zacarias de Andrade, Bernardina de Paixão Santos, Roberson Matteus Fernandes Silva, Mateus Gonçalves Silva*, Igor de Sousa Oliveira, Sávio Benvindo Ferreira, Rafaelle Cavalcante Lira. Antibacterial Screening of Lippia origanoides Essential Oil on Gram-negative Bacteria. Arch Pharm Pharma Sci. 2024: doi: 10.29328/journal.apps.1001053; 8: 024-028.

Read More

Most Viewed

Read More

Help ?