Abstract

Review Article

A systemic review on various pertinences and simulations of rotavirus

Sameer Sharma* and Seema Rani Padhiary

Published: 28 April, 2021 | Volume 5 - Issue 1 | Pages: 041-046

Rotavirus induced disease are a main source of dreadful, serious and drying out gastroenteritis in kids (less than five years old). Instead of the worldwide presentation of immunizations for rotavirus longer than 10 years back, rotavirus infections still result in more than 200,000 yearly passings, generally in developing countries. Rotavirus basically infects enterocytes and cause diarrheal through the demolition of absorptive enterocytes. Intestinal secretions are invigorated by rotavirus (non-auxiliary/structural protein) to enactment of the enteric sensory system. Rotavirus diseases can prompt viraemia and antigenaemia (term related with more serious indications of intense gastroenteritis). Rotavirus reinfections are regular throughout the life, even though the sickness seriousness is diminished with rehash contaminations. The resistant relates of assurance against rotavirus reinfection and recuperation from disease is inadequately perceived. This study takes a step forward to the administration of rotavirus disease centers, primarily on control and cure of dehydration, even though the utilization of antiviral and hostile to purgative medications can be demonstrated at some cases.

Read Full Article HTML DOI: 10.29328/journal.ijcv.1001034 Cite this Article Read Full Article PDF

References

  1. Ali A, Kazi AM, Cortese MM, Fleming JA, Moon S. et al. Impact of withholding breastfeeding at the time of vaccination on the immunogenicity of oral rotavirus vaccine-a randomized trial. PLoS One. 2015; 10: e0127622. PubMed: https://pubmed.ncbi.nlm.nih.gov/26035743/
  2. Aliabadi N, Tate JE, Haynes AK, Parashar UD. Sustained decrease in laboratory detection of rotavirus after implementation of routine vaccination-United States, 2000–2014. MMWR. Morb. Mortal. Wkly Rep. 2015; 64: 337–342.
  3. Angel J, Franco MA, Greenberg HB. Rotavirus immune responses and correlates of protection. Curr Opin Virol. 2012; 2: 419–425. PubMed: https://pubmed.ncbi.nlm.nih.gov/22677178/
  4. Ansari SA, Springthorpe VS, Sattar SA. Survival and vehicular spread of human rotaviruses: possible relation to seasonality of outbreaks. Rev Infect Dis. 1991; 13, 448–461. PubMed: https://pubmed.ncbi.nlm.nih.gov/1866549/
  5. Armah GE, Sow SO, Breiman RF, Dallas MJ, Tapia MD, et al. Efficacy of pentavalent rotavirus vaccine against severe rotavirus gastroenteritis in infants in developing countries in sub-Saharan Africa: a randomised, double-blind, placebo-controlled trial. Lancet. 2010; 376: 606–614. PubMed: https://pubmed.ncbi.nlm.nih.gov/20692030/
  6. Arias CF, Silva-Ayala D, López S. Rotavirus entry: a deep journey into the cell with several exits. J Virol. 2015; 89: 890–893. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4300671/
  7. Ball JM, Tian P, Zeng CQ, Morris AP, Estes MK. Age-dependent diarrhea induced by a rotaviral nonstructural glycoprotein. Science. 1996; 272; 101–104. PubMed: https://pubmed.ncbi.nlm.nih.gov/8600515/
  8. Banfield WG, Kasni¢ G, Blackwell AN. Further observations on the virus of epizootie diarrhoea of infant mice: an electron microscopic study. Virology. 1968; 36: 41-42L.
  9. Bányai K, Kemenesi G, Budinski I, Földes F, Zana B, et al. Candidate new rotavirus species in Schreiber’s bats, Serbia. Infect. Genet Evol. 2017; 48: 19–26. PubMed: https://pubmed.ncbi.nlm.nih.gov/27932285/
  10. Bartlett AV, Moore M, Gary GW, Starko KM, Erben JJ, et al. Diarrheal illness among infants and toddlers in day care centres, I. Epidemiology and pathogens. J Pediatr. 1985; 107: 495–502 PubMed: https://pubmed.ncbi.nlm.nih.gov/2995628/
  11. Bartlett AV, Moore M, Gary GW, Starko KM, Erben JJ, et al. Diarrheal illness among infants and toddlers in day care centres, II. Comparison with day care homes and households. J Pediatr. 1985; 107: 503–509.
  12. Becker-Dreps S, Vilchez S, Bucardo F, Twitchell E, Choi WS, et al. The association between fecal biomarkers of environmental enteropathy and rotavirus vaccine response in Nicaraguan infants. Pediatr Infect Dis J. 2017; 36: 412–416. PubMed: https://pubmed.ncbi.nlm.nih.gov/27977553/
  13. Bhowmick R, Halder UC, Chattopadhyay S, Chanda S, Nandi S, et al. Rotaviral enterotoxin nonstructural protein 4 targets mitochondria for activation of apoptosis during infection. J Biol Chem. 2012; 287: 35004–35020. PubMed: https://pubmed.ncbi.nlm.nih.gov/22888003/
  14. Bines JE, At Thobari J, Satria CD, Handley A, Watts E, et al. Human neonatal rotavirus vaccine (RV3-BB) to target rotavirus from birth. N Engl J Med. 2018; 378: 719–730. PubMed: https://pubmed.ncbi.nlm.nih.gov/29466164/
  15. Bishop RF, Davidson GP, Holmes IH, Ruck B. Detection of a new virus by electron microscopy of faecal extracts from children with acute gastroenteritis. Lancet. 1974; I49-I5I.
  16. Bishop RF, Barnes GL, Cipriani E, Lund JS. Clinical immunity after neonatal rotavirus infection. A prospective longitudinal study in young children. N Engl J Med. 1983; 309: 72–76. PubMed: https://pubmed.ncbi.nlm.nih.gov/6304516/
  17. Bishop RF. Natural history of human rotavirus infections. In: Kapikian AZ (ed) Viral infections of the gastrointestinal tract, 2nd edn. Marcel Dekker, New York, 1994; 131–167.
  18. Boshuizen JA, Reimerink JHJ, Korteland-van Male AM, van Ham VJJ, Koopmans MPG, et al. Changes in small intestinal homeostasis, morphology, and gene expression during rotavirus infection of infant mice. J Virol. 2003; 77: 13005–13016. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC296055/
  19. Boshuizen JA, Rossen JWA, Sitaram CK, Kimenai FPP, Simons-Oosterhuis Y, et al. Rotavirus enterotoxin NSP4 binds to the extracellular matrix proteins laminin-β3 and Fibronectin. J Virol. 2004; 78: 10045–10053. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC514988/
  20. Bucardo F, Rippinger CM, Svensson L, Patton JT. Vaccine-derived NSP2 segment in rotaviruses from vaccinated children with gastroenteritis in Nicaragua. Infect Genet Evol. 2012; 12: 1282–1294. PubMed: https://pubmed.ncbi.nlm.nih.gov/22487061/
  21. Burnett E, Jonesteller CL, Tate JE, Yen C, Parashar UD. Global impact of rotavirus vaccination on childhood hospitalizations and mortality from diarrhea. J Infect Dis. 2017; 215: 1666–1672. PubMed: https://pubmed.ncbi.nlm.nih.gov/28430997/
  22. Burnett E, Lopman BA, Parashar UD. Potential for a booster dose of rotavirus vaccine to further reduce diarrhea mortality. Vaccine. 2017; 35: 7198–7203. PubMed: https://pubmed.ncbi.nlm.nih.gov/29169893/
  23. Butz AM, Fosarelli P, Dick J, Cusack T, Yolken R. Prevalence of rotavirus on high-risk fomites in day-care facilities. Pediatrics. 1993; 92: 202–205. PubMed: https://pubmed.ncbi.nlm.nih.gov/8393172/
  24. Clark A, Black R, Tate J, Roose A, Kotloff K, et al. Estimating global, regional and national rotavirus deaths in children aged , 5 years; current approaches, new analyses, and proposed improvements. PLoS One. 2017; 12: e0183392. PubMed: https://pubmed.ncbi.nlm.nih.gov/28892480/
  25. Chen CC, Huang JL, Chang CJ, Kong MS. Fecal calprotectin as a correlative marker in clinical severity of infectious diarrhea and usefulness in evaluating bacterial or viral pathogens in children. J Pediatr Gastroenterol Nutr. 2012; 55: 541–547. PubMed: https://pubmed.ncbi.nlm.nih.gov/22699836/
  26. Chen MY, Kirkwood CD, Bines J, Cowley D, Pavlic D, et al. Rotavirus specific maternal antibodies and immune response to RV3-BB neonatal rotavirus vaccine in New Zealand. Hum Vaccin Immunother. 2017; 13: 1126–1135. PubMed: https://pubmed.ncbi.nlm.nih.gov/28059609/
  27. Chilengi R, Simuyandi M, Beach L, Mwila K, Becker-Dreps S, et al. Association of maternal immunity with rotavirus vaccine immunogenicity in Zambian infants. PLoS ONE. 2016; 11: e0150100. PubMed: https://pubmed.ncbi.nlm.nih.gov/26974432/
  28. Correia JB, Patel MM, Nakagomi O, Montenegro FMU, Germano EM, et al. Effectiveness of monovalent rotavirus vaccine (Rotarix) against severe diarrhea caused by serotypically unrelated G2P[4] strains in Brazil. J Infect Dis. 2010; 201: 363–369. PubMed: https://pubmed.ncbi.nlm.nih.gov/20047501/
  29. Cruickshank JC, Axton JHM, Webster OR. Viruses in gastroenteritis. Lancet. 1974; I353.
  30. Das JK. The effect of antiemetics in childhood gastroenteritis. BMC Public Health. 2013; 13: S9–S13.
  31. Das RR, Sankar J, Naik SS. Efficacy and safety of diosmectite in acute childhood diarrhoea: a meta-analysis. Arch Dis Child. 2015; 100: 704–712. PubMed: https://pubmed.ncbi.nlm.nih.gov/25784748/
  32. Davidson GP, Barnes GL. Structural and functional abnormalities of the small intestine in infants and young children with rotavirus enteritis. Acta Paediatr. Scand. 1979; 68: 181–186.
  33. Davidson GP, Bishop RF, Townley RRW, Holmes IH, Ruck BJ. Importance of a new virus in acute sporadic enteritis in children. Lancet. I975a; 242-246.
  34. Doro R, László B, Martella V, Leshem E, Gentsch J, et al. Review of global rotavirus strain prevalence data from six years post vaccine licensure surveillance: is there evidence of strain selection from vaccine pressure? Infect Genet Evol. 2014; 28: 446–461. PubMed: https://pubmed.ncbi.nlm.nih.gov/25224179/
  35. Dupont C, Foo JLK, Garnier P, Moore N, Mathiex-Fortunet H, et al. Oral diosmectite reduces stool output and diarrhea duration in children with acute watery diarrhea. Clin Gastroenterol Hepatol. 2009; 7: 456–462. PubMed: https://pubmed.ncbi.nlm.nih.gov/19268266/
  36. Echeverria P, Blacklow NR, Cukor GG, Vibulbandhitkit S, Changchawalit S, et al. Rotavirus as a cause of severe gastroenteritis in adults. J Clin Microbiol. 1983; 18: 663–667. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC270871/
  37. Emparanza Knörr JI. Systematic review of the efficacy of racecadotril in the treatment of acute diarrhoea [Spanish]. An Pediatr. 2008; 69: 432–438.
  38. Emperador DM, Velasquez DE, Estivariz CF, Lopman B, Jiang B, et al. Interference of monovalent, bivalent, and trivalent oral poliovirus vaccines on monovalent rotavirus vaccine immunogenicity in rural Bangladesh. Clin Infect Dis. 2016; 62: 150–156. PubMed: https://pubmed.ncbi.nlm.nih.gov/26349548/
  39. Estes MK, Greenberg HB. in Field’s Virology (eds Knipe DM, Howley PM) 1347–1401, Lippincott Williams & Wilkins. 2013.
  40. Fauvel M, Svence L, Bamtv LA, Petro R, Bloch S. Haemagglutination, and haemagglutination - inhibition studies with a strain of Nebraska calf diarrhoea virus (bovine rotavirus). Intervirology. 1978; 9: 95-105. PubMed: https://pubmed.ncbi.nlm.nih.gov/201585/
  41. Flewett TH, Bryden AS, Davies H. Virus particles in gastroenteritis. Lancet. 1973; I497.
  42. Fernel1us AL, Ritchie AE, Classick LG, Norman JO, Mebus CA. Cell culture adaptation and propagation of a reovirus-like agent of calf diarrhoea from a field outbreak in Nebraska. Archiv fiir die gesamte Virusforschung. 1972; 37: 114-130. PubMed: https://pubmed.ncbi.nlm.nih.gov/4623479/

Figures:

Figure 1

Figure 1

Figure 1

Figure 2

Similar Articles

Recently Viewed

  • Antibacterial Screening of Lippia origanoides Essential Oil on Gram-negative Bacteria
    Rodrigo Marcelino Zacarias de Andrade, Bernardina de Paixão Santos, Roberson Matteus Fernandes Silva, Mateus Gonçalves Silva*, Igor de Sousa Oliveira, Sávio Benvindo Ferreira and Rafaelle Cavalcante Lira Rodrigo Marcelino Zacarias de Andrade, Bernardina de Paixão Santos, Roberson Matteus Fernandes Silva, Mateus Gonçalves Silva*, Igor de Sousa Oliveira, Sávio Benvindo Ferreira, Rafaelle Cavalcante Lira. Antibacterial Screening of Lippia origanoides Essential Oil on Gram-negative Bacteria. Arch Pharm Pharma Sci. 2024: doi: 10.29328/journal.apps.1001053; 8: 024-028.
  • Orofacial manifestations of COVID-19
    Hariharan Ramakrishnan* and Maniamuthu Ragupathi Hariharan Ramakrishnan*,Maniamuthu Ragupathi. Orofacial manifestations of COVID-19 . J Oral Health Craniofac Sci. 2021: doi: 10.29328/journal.johcs.1001034; 6: 006-007
  • Approaching Mental Health Through a Preventive Data Analysis Platform
    Gabriel F Pestana and Olga Valentim* Gabriel F Pestana, Olga Valentim*. Approaching Mental Health Through a Preventive Data Analysis Platform. Arch Psychiatr Ment Health. 2024: doi: 10.29328/journal.apmh.1001052; 8: 020-027
  • Second Stage of Labor Cesarean Section Maternal and Fetal Outcomes
    Ahazeej Gurashi, Ameer Osman, Hajar Suliman, Ayat Eltigani, Isra Siralkatim, Hamza Orfali and Awadalla Abdelwahid Suliman* Ahazeej Gurashi, Ameer Osman, Hajar Suliman, Ayat Eltigani, Isra Siralkatim, Hamza Orfali, Awadalla Abdelwahid Suliman*. Second Stage of Labor Cesarean Section Maternal and Fetal Outcomes. Clin J Obstet Gynecol. 2024: doi: 10.29328/journal.cjog.1001159; 7: 025-033
  • Surgical and Delivery Outcomes of Coexisting Uterine Fibroids with Pregnancies in Nigeria
    Ade-Ojo Idowu Pius* and Odetola Amoo A Ade-Ojo Idowu Pius*, Odetola Amoo A. Surgical and Delivery Outcomes of Coexisting Uterine Fibroids with Pregnancies in Nigeria. Clin J Obstet Gynecol. 2024: doi: 10.29328/journal.cjog.1001161; 7: 037-041

Read More

Most Viewed

Read More

Help ?