Abstract

Research Article

Evaluation of the LumiraDx SARS-CoV-2 antigen assay for large-scale population testing in Senegal

Moustapha Mbow*, Ibrahima Diallo, Mamadou Diouf, Marouba Cissé#, Moctar Gningue#, Aminata Mboup, Nafissatou Leye, Gora Lo, Yacine Amet Dia, Abdou Padane, Djibril Wade, Josephine Khady Badiane, Oumar Diop, Aminata Dia, Ambroise Ahouidi, Doudou George Massar Niang, Babacar Mbengue, Maguette Dème Sylla Niang, Papa Alassane Diaw, Tandakha Ndiaye Dieye, Badara Cisé, El Hadj Mamadou Mbaye, Alioune Dieye and Souleymane Mboup

Published: 05 January, 2022 | Volume 6 - Issue 1 | Pages: 001-006

Purpose: Real-time reverse-transcription polymerase chain reaction (RT-PCR)-based testing remains the gold standard for the diagnosis of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Due to the high diagnosis demand of SARS-CoV-2 and the limited resources for RT-PCR testing, especially in Low-Income Countries (LICs), antigen-based methods are being considered as an option. The aim of this study was to assess the performance of LumiraDx SARS-CoV-2 antigen assay for large population screening compared to RT-PCR.
Methods: This evaluation was conducted on 4146 participants including travelers and participants under household survey and vaccine evaluation studies before injection of the first dose. Oropharyngeal and nasopharyngeal swaps were collected from each participant into 2 mL of viral transport medium (VTM) and 400 μl of VTM were used to assess the performance of LumiraDx SARS-CoV-2 antigen assay, compared to RT-PCR. 
Results: The prevalence of SARS-CoV-2 of the cohort was 4.5% with RT-PCR and 4.1% with LumiraDx antigen test. Compared to the RT-PCR, the sensitivity and specificity of the LumiraDx antigen SARS-CoV-2 test were 82,7% [95% CI 74.1-89,7] and 99.9% [95% CI 99.6-99.9] respectively. Given the RT-PCR threshold cycle (Ct) range, the sensitivity was 92.1% [95% CI 84.6-96.3] when the Ct value was below or equal 33 cycles, and 38.1% [95% CI 18.9-61.3] when it was above 33 cycles. The inter-rater reliability showed a kappa coefficient of 0.88 when considering all the patients and 0.94 for Ct values below 33 cycles. 
Conclusion: Our data have shown that the LumiraDx platform can be considered for large-scale testing of SARS-CoV-2.

Read Full Article HTML DOI: 10.29328/journal.ijcv.1001041 Cite this Article Read Full Article PDF

Keywords:

LumiraDx; SARS-CoV-2; Large-scale testing; RT-PCR; Senegal

References

  1. Mathuria JP, Yadav R, Rajkumar. Laboratory diagnosis of SARS-CoV-2 - A review of current methods. J Infect Public Health. 2020; 13: 901-905. PubMed: https://pubmed.ncbi.nlm.nih.gov/32534946/
  2. Interim Guidance; 2020. Laboratory testing for coronavirus disease (COVID-19) in suspected human cases. CDC C-NC-nR-TR-PDP CDC. 2020. CDC 2019-Novel Coronavirus (2019-nCoV) Real-Time RT-PCR Diagnostic Panel.
  3. Sheridan C. Fast, portable tests come online to curb coronavirus pandemic. Nat Biotechnol. 2020; 38: 515-518. PubMed: https://pubmed.ncbi.nlm.nih.gov/32203294/
  4. Emery SL, Erdman DD, Bowen MD, Newton BR, Winchell JM, et al. Real-time reverse transcription-polymerase chain reaction assay for SARS-associated coronavirus. Emerg Infect Dis. 2004; 10: 311-316. PubMed: https://pubmed.ncbi.nlm.nih.gov/15030703/
  5. Udugama B, Kadhiresan P, Kozlowski HN, Malekjahani A, Osborne M, et al. Diagnosing COVID-19: The Disease and Tools for Detection. ACS Nano. 2020; 14: 3822-3835. PubMed: https://pubmed.ncbi.nlm.nih.gov/32223179/
  6. Farfour E, Asso-Bonnet M, Vasse M. The ID NOW COVID-19, a high-speed high-performance assay. Eur J Clin Microbiol Infect Dis. 2021; 40: 2041-2045.PubMed: https://pubmed.ncbi.nlm.nih.gov/33855651/
  7. Porte L, Legarraga P, Vollrath V, Aguilera X, Munita JM, et al. Evaluation of a novel antigen-based rapid detection test for the diagnosis of SARS-CoV-2 in respiratory samples. Int J Infect Dis. 2020; 99: 328-333. PubMed: https://pubmed.ncbi.nlm.nih.gov/32497809/
  8. Nagura-Ikeda M, Imai K, Tabata S, Miyoshi K, Murahara N, et al. Clinical Evaluation of Self-Collected Saliva by Quantitative Reverse Transcription-PCR (RT-qPCR), Direct RT-qPCR, Reverse Transcription-Loop-Mediated Isothermal Amplification, and a Rapid Antigen Test To Diagnose COVID-19. J Clin Microbiol. 2020; 58: e01438-01420.PubMed: https://pubmed.ncbi.nlm.nih.gov/32636214/
  9. Krogh J. Empyema of the gallbladder: a case with unusual presentation. Acta Chir Belg. 1989; 89: 204-205. PubMed: https://pubmed.ncbi.nlm.nih.gov/2800855/
  10. Linares M, Perez-Tanoira R, Carrero A, Romanyk J, Perez-Garcia F, et al. Panbio antigen rapid test is reliable to diagnose SARS-CoV-2 infection in the first 7 days after the onset of symptoms. J Clin Virol. 2020; 133: 104659. PubMed: https://pubmed.ncbi.nlm.nih.gov/33160179/
  11. Mertens P, De VN, Martiny D, Jassoy C, Mirazimi A, et al. Development and Potential Usefulness of the COVID-19 Ag Respi-Strip Diagnostic Assay in a Pandemic Context. Front Med (Lausanne). 2020; 7: 225. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7227790/
  12. Kohmer N, Toptan T, Pallas C, Karaca O, Pfeiffer A, et al. The Comparative Clinical Performance of Four SARS-CoV-2 Rapid Antigen Tests and Their Correlation to Infectivity In Vitro. J Clin Med. 2021; 10: 328.PubMed: https://pubmed.ncbi.nlm.nih.gov/33477365/
  13. Mak GCK, Lau SSY, Wong KKY, Chow NLS, Lau CS, et al. Evaluation of rapid antigen detection kit from the WHO Emergency Use List for detecting SARS-CoV-2. J Clin Virol. 2021; 134: 104712. PubMed: https://pubmed.ncbi.nlm.nih.gov/33338894/
  14. World Health Organization. A coordinated global research roadmap: 2019 novel coronavirus. 2020. https://www.who.int/blueprint/priority-diseases/key-action/Coronavirus_Roadmap_V9.pdf
  15. Nalumansi A, Lutalo T, Kayiwa J, Watera C, Balinandi S, et al. Field evaluation of the performance of a SARS-CoV-2 antigen rapid diagnostic test in Uganda using nasopharyngeal samples. Int J Infect Dis. 2021; 104: 282-286. PubMed: https://pubmed.ncbi.nlm.nih.gov/33130198/
  16. Scohy A, Anantharajah A, Bodeus M, Kabamba-Mukadi B, Verroken A, et al. Low performance of rapid antigen detection test as frontline testing for COVID-19 diagnosis. J Clin Virol. 2020; 129: 104455. PubMed: https://pubmed.ncbi.nlm.nih.gov/32485618/
  17. Toptan T, Eckermann L, Pfeiffer AE, Hoehl S, Ciesek S, Drosten C, et al. Evaluation of a SARS-CoV-2 rapid antigen test: Potential to help reduce community spread? J Clin Virol. 2021; 135: 104713. PubMed: https://pubmed.ncbi.nlm.nih.gov/33352470/
  18. Drain PK, Ampajwala M, Chappel C, Gvozden AB, Hoppers M, et al. A Rapid, High-Sensitivity SARS-CoV-2 Nucleocapsid Immunoassay to Aid Diagnosis of Acute COVID-19 at the Point of Care: A Clinical Performance Study. Infect Dis Ther. 2021; 10: 753-761. https://pubmed.ncbi.nlm.nih.gov/33629225/
  19. LumiraDx website and SARS-CoV-2 Antigen test EUA Product Insert. 2020. https://www.lumiradx.com/us-en/
  20. Instructions for Use. https://www.fda.gov/media/137178/download
  21. McHugh ML. Interrater reliability: the kappa statistic. Biochem Med (Zagreb). 2012; 22: 276-282. https://pubmed.ncbi.nlm.nih.gov/23092060/
  22. https://www.worldometers.info/coronavirus/country/senegal
  23. Ministère de la Sante et de l’Action Sociale. https://www.sante.gouv.sn
  24. Performance evaluation of the LumiraDx SARS-CoV-2 Antigen Test to aid diagnosis of acute COVID-19 at the point of care. https://www.lumiradx.com/assets/pdfs/white-papers/performance-evaluation-of-sars-cov-2-ag-test.pdf?v=1
  25. WHO Antigen-Detection in the Diagnosis of SARS-CoV-2 Infection Using Rapid Immunoassays: Interim Guidance. 2020. https://www.who.int/publications/i/item/antigen-detection-in-the-diagnosis-of-sars-cov-2infection-using-rapid-immunoassays    
  26. Huang JT, Ran RX, Lv ZH, Feng LN, Ran CY, et al. Chronological Changes of Viral Shedding in Adult Inpatients With COVID-19 in Wuhan, China. Clin Infect Dis. 2020; 71: 2158-2166. PubMed: https://pubmed.ncbi.nlm.nih.gov/32445580/
  27. Liu Y, Yan LM, Wan L, Xiang TX, Le A, et al. Viral dynamics in mild and severe cases of COVID-19. Lancet Infect Dis. 2020; 20: 656-657. PubMed: https://pubmed.ncbi.nlm.nih.gov/32199493/
  28. Liu Y, Liao W, Wan L, Xiang T, Zhang W. Correlation Between Relative Nasopharyngeal Virus RNA Load and Lymphocyte Count Disease Severity in Patients with COVID-19. Viral Immunol. 2021; 34: 330-335. PubMed: https://pubmed.ncbi.nlm.nih.gov/32297828/
  29. Liu Y, Yang Y, Zhang C, Huang F, Wang F, et al. Clinical and biochemical indexes from 2019-nCoV infected patients linked to viral loads and lung injury. Sci China Life Sci. 2020; 63: 364-374. PubMed: https://pubmed.ncbi.nlm.nih.gov/32048163/
  30. Xia XY, Wu J, Liu HL, Xia H, Jia B, et al. Epidemiological and initial clinical characteristics of patients with family aggregation of COVID-19. J Clin Virol. 2020; 127: 104360. PubMed: https://pubmed.ncbi.nlm.nih.gov/32305025/
  31. Yu X, Sun S, Shi Y, Wang H, Zhao R, et al. SARS-CoV-2 viral load in sputum correlates with risk of COVID-19 progression. Crit Care. 2020; 24: 170. PubMed: https://pubmed.ncbi.nlm.nih.gov/32326952/
  32. Zou L, Ruan F, Huang M, Liang L, Huang H, et al. SARS-CoV-2 Viral Load in Upper Respiratory Specimens of Infected Patients. N Engl J Med. 2020; 382: 1177-11779. PubMed: https://pubmed.ncbi.nlm.nih.gov/32074444/
  33. Schwierzeck V, Konig JC, Kuhn J, Mellmann A, Correa-Martinez CL, et al. First Reported Nosocomial Outbreak of Severe Acute Respiratory Syndrome Coronavirus 2 in a Pediatric Dialysis Unit. Clin Infect Dis. 2021; 72: 265-270. PubMed: https://pubmed.ncbi.nlm.nih.gov/33501962/
  34. Arons MM, Hatfield KM, Reddy SC, Kimball A, James A, et al. Presymptomatic SARS-CoV-2 Infections and Transmission in a Skilled Nursing Facility. N Engl J Med. 2020; 382: 2081-2090.
  35. Kimball A, Hatfield KM, Arons M, James A, Taylor J, et al. Asymptomatic and Presymptomatic SARS-CoV-2 Infections in Residents of a Long-Term Care Skilled Nursing Facility - King County, Washington, March 2020. MMWR Morb Mortal Wkly Rep. 2020; 69: 377-381. PubMed: https://pubmed.ncbi.nlm.nih.gov/32240128/
  36. La SB, Le BM, Andreani J, Hoang VT, Grimaldier C, et al. Viral RNA load as determined by cell culture as a management tool for discharge of SARS-CoV-2 patients from infectious disease wards. Eur J Clin Microbiol Infect Dis. 2020; 39: 1059-1061. PubMed: https://pubmed.ncbi.nlm.nih.gov/32342252/
  37. Perera RAPM, Tso E, Tsang OTY, Tsang DNC, Fung K, et al. SARS-CoV-2 Virus Culture and Subgenomic RNA for Respiratory Specimens from Patients with Mild Coronavirus Disease. Emerg Infect Dis. 2020; 26: 2701-2704. PubMed: https://pubmed.ncbi.nlm.nih.gov/32749957/
  38. van Kampen JJA, van de Vijver DAMC, Fraaij PLA, Haagmans BL, Lamers MM, et al. Duration and key determinants of infectious virus shedding in hospitalized patients with coronavirus disease-2019 (COVID-19). Nat Commun. 2021; 12: 267. PubMed: https://pubmed.ncbi.nlm.nih.gov/33431879/
  39. Wolfel R, Corman VM, Guggemos W, Seilmaier M, Zange S, et al. Virological assessment of hospitalized patients with COVID-2019. Nature. 2020; 581: 465-469. PubMed: https://pubmed.ncbi.nlm.nih.gov/32235945/
  40. Bullard J, Dust K, Funk D, Strong JE, Alexander D, et al. Predicting Infectious Severe Acute Respiratory Syndrome Coronavirus 2 From Diagnostic Samples. Clin Infect Dis. 2020; 71: 2663-2666. PubMed: https://pubmed.ncbi.nlm.nih.gov/32442256/

Figures:

Figure 1

Figure 1

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More