Abstract

Review Article

Impact of COVID-19 pandemic on anti-microbial resistance and secondary microbial infections

KP Mishra*, Priyanka Mishra, AK Singh and SB Singh

Published: 25 February, 2021 | Volume 5 - Issue 1 | Pages: 032-036

Corona Virus Disease-2019 (COVID-19) has become one of the most serious diseases in the history of mankind. It has captured the entire world and solutions are yet to be discovered to fight this global crisis. The outcomes of COVID-19 are influenced by a variety of pre-existing factors. The secondary microbial infections are one of the prominent ones that are major contributors for Antimicrobial Resistance (AMR) as they warrant the use of antimicrobial medications. The present review aimed at exploring the potential relationship between AMR under such circumstances and COVID-19 related outcomes. The published literature across the globe has delineated that the impact of COVID-19 may have worsened by a great degree due to the presence of secondary infections majorly bacterial ones. The consequences of COVID-19 have been fatal and a significant proportion can be a major attributor to AMR, either directly or indirectly. Although, there is a dearth of studies that can establish a very strong and direct relationship between AMR and negative COVID-19 outcomes so in-depth research on this topic is required to further explain this relationship in detail. 

Read Full Article HTML DOI: 10.29328/journal.ijcv.1001032 Cite this Article Read Full Article PDF

Keywords:

Antimicrobial resistance; COVID-19; Antibiotics; Inflammation; Viruses

References

  1. Zheng J. SARS-CoV-2: an emerging coronavirus that causes a global threat. Int J Biol Sci. 2020; 16: 1678-1685. PubMed: https://pubmed.ncbi.nlm.nih.gov/32226285/
  2. Mirzaei R, Goodarzi P, Asadi M, Soltani A, Aljanabi HA, et al. Bacterial co‐infections with SARS‐CoV‐2. IUBMB life. 2020; 72: 2097-2111. PubMed: https://pubmed.ncbi.nlm.nih.gov/32770825/
  3. Reardon S. Antibiotic treatment for COVID-19 complications could fuel resistant bacteria. Science. 2020.
  4. Murray AK. The Novel Coronavirus COVID-19 Outbreak: Global Implications for Antimicrobial Resistance. Front Microbiol. 2020; 11; 1020. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7237633/
  5. Kim H. Outbreak of novel coronavirus (COVID-19): what is the role of radiologists? Eur Radiol. 2020; 18: 1–2. PubMed: https://pubmed.ncbi.nlm.nih.gov/32072255/
  6. Zhou P, Liu Z, Chen Y, Xiao Y, Huang X, Fan XG. Bacterial and fungal infections in COVID-19 patients: A matter of concern. Infect Control Hosp Epidemiol. 2020; 1-2. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7184139/
  7. Koenig SM, Truwit JD. Ventilator-associated pneumonia: diagnosis, treatment, and prevention. Clin Microbiol Rev. 2006; 19: 637-657. PubMed: https://pubmed.ncbi.nlm.nih.gov/17041138/
  8. Pani A, Lauriola M, Romandini A, Scaglione F. Macrolides and viral infections: focus on azithromycin in COVID-19 pathology. Int J Antimicrob Agents. 2020; 106053. PubMed: https://pubmed.ncbi.nlm.nih.gov/32534189/
  9. Firth A, Prathapan P. Azithromycin: The first broad-spectrum therapeutic. Eur J Med Chem. 2020; 112739. PubMed: https://pubmed.ncbi.nlm.nih.gov/32871342/
  10. Hantoushzadeh S, Aliabad RA, Norooznezhad AH. Antibiotics, pregnancy, and fetal mental illnesses: where is the link? Am J Obstet Gynecol. 2020; 222: 639-640. PubMed: https://pubmed.ncbi.nlm.nih.gov/32017921/
  11. Hantoushzadeh S, Norooznezhad AH. Inappropriate Antibiotic Consumption as a Possible Cause of Inflammatory Storm and Septic Shock in Patients Diagnosed with Coronavirus-19 Disease (COVID-19). Arch Med Res. 2020; 51: 347-348. PubMed: https://pubmed.ncbi.nlm.nih.gov/32340759/
  12. Kirchhelle et al. Opinion: Antibiotic Resistance Could Lead to More COVID-19 Deaths. Scientific American. 2020. https://archive.lstmed.ac.uk/id/eprint/14112
  13. Cassini A, Högberg LD, Plachouras D, Quattrocchi A, Hoxha A, et al. Attributable deaths and disability-adjusted life-years caused by infections with antibiotic-resistant bacteria in the EU and the European Economic Area in 2015: a population-level modelling analysis. The Lancet Infect Dis. 2019; 19: 56-66. PubMed: https://pubmed.ncbi.nlm.nih.gov/30409683/
  14. Helsingin Sanomat. Antibioottien runsas käyttö saattaa selittää Italian koronavirus-kuolemien määrää. 2020. https://www.hs.fi/tiede/art-2000006464588.html
  15. Bengoechea JA, Bamford CG. SARS‐CoV‐2, bacterial co‐infections, and AMR: the deadly trio in COVID‐19? EMBO Mol Med. 2020; 12: e12560. PubMed: https://pubmed.ncbi.nlm.nih.gov/32453917/
  16. Neto AG, Lo KB, Wattoo A, Salacup G, Pelayo J, et al. Bacterial Infections and Patterns of Antibiotic Use in Patients with COVID‐19. J Med Virol. 20121; 93: 1489-1495. PubMed: https://pubmed.ncbi.nlm.nih.gov/32808695/
  17. Lansbury L, Lim B, Baskaran V, Lim WS. Co-infections in people with COVID-19: a systematic review and meta-analysis. J Infect. 2020; 81: 266-275. PubMed: https://pubmed.ncbi.nlm.nih.gov/32473235/
  18. Langford BJ, So M, Raybardhan S, Leung V, Westwood D, et al. Bacterial co-infection and secondary infection in patients with COVID-19: a living rapid review and meta-analysis, Clin Microbiol Infect. 2020; 26: 1622-1629. PubMed: https://pubmed.ncbi.nlm.nih.gov/32711058/
  19. Abdalla S, Almaslamani MA, Hashim SM, Ibrahim AS, Omrani AS. Fatal Coronavirus Disease 2019-associated Pulmonary Aspergillosis; A Report of Two Cases and Review of the Literature. IDCases. 2020. e00935. PubMed: https://pubmed.ncbi.nlm.nih.gov/32864340/
  20. Lamoth F, Glampedakis E, Boillat-Blanco N, Oddo M, Pagani JL. Incidence of invasive pulmonary aspergillosis among critically ill COVID-19 patients. Clin Microbiol Infect. 2020; 26: 1706-1708. PubMed: https://pubmed.ncbi.nlm.nih.gov/32659385/
  21. Verweij PE, Gangneux JP, Bassetti M, Brüggemann RJ, Cornely OA, et al. Diagnosing COVID-19-associated pulmonary aspergillosis. Lancet Microbe. 2020; 1: e53-55. PubMed: https://pubmed.ncbi.nlm.nih.gov/32835328/
  22. Alanio A, Delliere S, Fodil S, Bretagne S, Megarbane B. High prevalence of putative invasive pulmonary aspergillosis in critically ill COVID-19 patients. medRxiv. 2020.
  23. Andreas L. E. van Arkel, Tom A. Rijpstra,1 Huub N. A. Belderbos,1 Peter van Wijngaarden, Paul E. Verweij and Robbert G. Bentvelsen COVID-19–associated Pulmonary Aspergillosis. Am J Respir Critical Care Med. 2020; 202: 132-135. PubMed: https://pubmed.ncbi.nlm.nih.gov/32396381/
  24. Ghelfenstein-Ferreira T, Saade A, Alanio A, Bretagne S, de Castro RA, et al. Recovery of a triazole-resistant Aspergillus fumigatus in respiratory specimen of COVID-19 patient in ICU–A case report. Med Mycol Case Rep. 2020. PubMed: https://pubmed.ncbi.nlm.nih.gov/32837880/
  25. Wang L, He W, Yu X, Hu D, Bao M, et al. Coronavirus Disease 2019 in elderly patients: characteristics and prognostic factors based on 4-week follow-up. J Infect. 2020; 80: 639-645. PubMed: https://pubmed.ncbi.nlm.nih.gov/32240670/
  26. Zhou F, Yu T, Du R, Fan G, Liu Y, et al. Clinical course and risk factors for mortality of adult in patients with COVID-19 in Wuhan, China: a retrospective cohort study. Lancet. 2020; 395: 1054-1062. PubMed: https://pubmed.ncbi.nlm.nih.gov/32171076/
  27. Huang C, Wang Y, Li X, Ren L, Zhao J, et al. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet. 2020; 395: 497–506. PubMed: https://pubmed.ncbi.nlm.nih.gov/31986264/
  28. Centers for Disease Control and Prevention (CDC). Bacterial coinfections in lung tissue specimens from fatal cases of 2009 pandemic influenza A (H1N1) - United States, May-August 2009. MMWR Morb Mortal Wkly Rep. 2009; 58: 1071-1074. PubMed: https://pubmed.ncbi.nlm.nih.gov/19798021/
  29. Lupia T, Scabini S, Pinna SM, Di Perri G, De Rosa FG, et al. 2019 novel coronavirus (2019-nCoV) outbreak: A new challenge. J Glob Antimicrob Resist. 2020; 21: 22-27. PubMed: https://pubmed.ncbi.nlm.nih.gov/32156648/
  30. Wang Z, Yang B, Li Q, Wen L, Zhang R. Clinical Features of 69 Cases with Coronavirus Disease 2019 in Wuhan, China. Clin Infect Dis. 2020; 71: 769-777. PubMed: https://pubmed.ncbi.nlm.nih.gov/32176772/.
  31. Strategic preparedness and response plan for the new coronavirus. 2020. https://www.who.int/publications-detail/COVID-19-strategy-update-13-april-2020
  32. Chai LYA, Ng TM, Habib AG, Singh K, Kumarasinghe G, et al. Paradoxical Increase in Methicillin-Resistant Staphylococcus aureus Acquisition Rates Despite Barrier Precautions and Increased Hand Washing Compliance during an Outbreak of Severe Acute Repiratory Syndrome. Clin Infect Dis. 2005; 40: 632–633. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7107850/
  33. Rawson TM, Ming D, Ahmad R, Moore LS, Holmes AH. Antimicrobial use, drug-resistant infections and COVID-19. Nat Rev Microbiol. 2020; 18: 409-410. PubMed: https://pubmed.ncbi.nlm.nih.gov/32488173/
  34. Li X, Wang L, Yan S, Yang F, Xiang L, et al. Clinical characteristics of 25 death cases with COVID-19: a retrospective review of medical records in a single medical center, Wuhan, China. Int J Infect Dis. 2020; 94: 128-132. PubMed: https://pubmed.ncbi.nlm.nih.gov/32251805/
  35. Yap FHY, Gomersall CD, Fung KSC, Ho PL, Ho OM, et al. Increase in methicillin-resistant Staphylococcus aureus acquisition rate and change in pathogen pattern associated with an outbreak of severe acute respiratory syndrome. Clin Infect Dis. 2004; 39: 511-516. PubMed: https://pubmed.ncbi.nlm.nih.gov/15356814/
  36. European Centre for Disease Prevention and Control. ECDC country visit to Italy to discuss antimicrobial resistance issues. Stockholm: ECDC; 2017.
  37. Cao J, Tu WJ, Cheng W, Yu L, Liu YK, et al. Clinical Features and Short-term Outcomes of 102 Patients with Corona Virus Disease 2019 in Wuhan, China. Clin Infect Dis. 2020; 71: 748-755. PubMed: https://pubmed.ncbi.nlm.nih.gov/32239127/
  38. Bergman M, Huikko S, Huovinen P, Paakkari P, Seppälä H, et al. Macrolide and azithromycin use are linked to increased macrolide resistance in Streptococcus pneumoniae. Antimicrob Agents Chemother. 2006; 50: 3646-3650. PubMed: https://pubmed.ncbi.nlm.nih.gov/16940064/
  39. Sanchez F, Mensa J, Martinez JA, García E, Marco F, et al. Is azithromycin the first-choice macrolide for treatment of community-acquired pneumonia? Clin infect Diseas. 2003; 36: 1239-1245. PubMed: https://pubmed.ncbi.nlm.nih.gov/12746768/
  40. Evans J, Hannoodee M, Wittler M. Amoxicillin Clavulanate. InStatPearls. 2020. PubMed: https://pubmed.ncbi.nlm.nih.gov/30844191/
  41. Panati K, Narala VR. COVID-19 outbreak: an update on therapeutic options. SN Compr Clin Med. 2020. PubMed: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7110269/
  42. Pushpakom S, Iorio F, Eyers PA, Escott KJ, Hopper S, et al. Drug repurposing: progress, challenges and recommendations. Nat Rev Drug Discov. 2019; 18: 41-58. PubMed: https://pubmed.ncbi.nlm.nih.gov/30310233/

Similar Articles

Recently Viewed

Read More

Most Viewed

Read More